If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6)(x^2)=2
We move all terms to the left:
(6)(x^2)-(2)=0
a = 6; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·6·(-2)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*6}=\frac{0-4\sqrt{3}}{12} =-\frac{4\sqrt{3}}{12} =-\frac{\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*6}=\frac{0+4\sqrt{3}}{12} =\frac{4\sqrt{3}}{12} =\frac{\sqrt{3}}{3} $
| 8,6+1,7x–7,3=7,42 | | {w}{-6}=-7 | | -5-2x=-5x+10 | | 2.5=0.25^x | | 6(7+7k)=-30+6k | | 4/5c-1/2=-3/4+5/8c | | 17x/30=19/30 | | 3x+5-1x=18+4+1x | | 6+5x=3x+10 | | -3g=-2g+4 | | 28+6x=4(-4+7x) | | 2(9x+9x)=8x | | 8x-14-2x+11=180 | | 545=5x-20 | | 8(6+2x)-x=123 | | 5y=42y-60 | | 2x+3=-32+7x | | 223=2(3r+1)+7(-5-2r) | | 3+6x=3x+39 | | 3+6x=3x+39* | | (2x-5)/3+12=25 | | 4.62=3v | | 20-5x=545 | | 10x-5=-1x+22 | | 26-7x=38 | | -19c=17-20c | | 3(2m-4)=-9m+18 | | 7(7-6x)+8=225 | | 3n+–1=–4 | | 240=12(5x) | | 8=x+3.5 | | n+-4=-18 |